lunes, 20 de enero de 2014

Documental. Preguntas/Respuestas.

¿ Qué células especializadas se encuentran en la retina humana?

La retina tiene tres tipos de células:
  • Pigmentadas: Se encargan del metabolismo de los fotorreceptores.
  • Neuronas:
  1. Células fotorreceptoras: Son los conos y los bastones. Transforman los impulsos luminosos en señales eléctricas.
  2. Células bipolares de la retina. Conectan las celulas fotorreceptoras con las células ganglionares
  3. Células amacrinas. Son interneuronas moduladoras.
  4. Células horizontales. Cumplen una función similar a las células amacrinas, son interneuronas moduladoras.
  5. Células ganglionares de la retina. De estas neuronas parte el nervio optico que conecta la retina con el cerebro.
  • Células de sostén:
  1. Astrocitos.
  2. Células de Müller. Su función es de soporte, sintetizan glucogeno y ceden glucosa a otras células nerviosas.

¿Qué diferencias puedes encontrar? Explica la recepción humana del color.

 Las diferencias entre unas y otras es, cada una tiene una función, ya sea intermediaria, para dar soporte o para encargarse de transformar los impulsos luminosos en señales eléctricas y asi poder ver lo que vemos constantemente y de la manera en lo que vemos.

El Ojo (globo ocular) es casi esférico y tiene un diametro ligeramente superior a los 2 cm, está lleno de fludo gelatinoso, el humor vitreo, que lo mantiene rígido. La córnea transparente forma parte de la superficie externa del ojo y es la principal responsable de la formación de la imagen. El iris, destras de la córnea es un diafragma ajustable que controla la intensidad lumínosa y el cristalino que ajusta el enfoque fino cambiando de forma al achatarlo los ligamentos suspensores. La imagen se proyecta sobre la retina, zona sensible a la luz, que convierte las radiaciones electromagnéticas en señales eléctricas que se trasmiten al cerebro a traves del nervio óptico.

En la retina para conseguir esta sensibilidad a la luz se encuentran unas células especializadas en la conversión radiación electromagnética-señal electrica que son los bastones y los conos, estando estes últimos más concentrados en la zona central de la retina (fovea) y su concentración disminuye hacia el exterior.

En toda la retina existen más de 100 millones de bastones, que tienen un pigmento llamado rodopsina que hace que estas células sean sensibles a luz con poca intensidad pero sin diferenciar colores ni tonalidades, reciben este nombre por ser alargadas y recordar ligeramente a la forma de un bastón.

Los Conos son otro tipo de células que hai en menor cantidad (unos 6 millones) pero que diferencian colores, ya que un tipo de conos es sensible (convierte luz en impulsos nerviosos)a las longitudes de onda de entre 400 y 500 nm (Azul violeta), otros son sensibles a las longitudes de de onda de entre 500 y 600 nm (verdes), existiendo otro tipo de conos sensibles a las radiaciones de entre 600 y 700 nm (rojo), sumando las tres sensibilidades alcanzamos un máximo de sensibilidad en el entrono de los 550 nm (amarillo verdoso).

La visión humana es una visión tricromática, ya que parte de la visión separada de tres colores AZUL (Azul violeta u oscuro) VERDE y ROJO, y con estas tres percepciones se crean todos los colores. Esto que se ha comprobado en el siglo XX ya  fue enunciado a principios del siglo XIX por Thomas Young como teoría clásica de la visión del color.

¿En que se basa el modelo HSV?

El modelo HVS define los colores en función de las tres propiedades del color: Matiz, luminosidad y saturación.

 

Qué es Hue/Value/Saturation?

 
El tono o tinte (en inglés Hue) es una de las propiedades o cualidades fundamentales en la propiedad de un color, definido técnicamente ,como «el grado en el cual un estímulo puede ser descrito como similar o diferente de los estímulos como rojo, amarillo y azul». Se refiere a la propiedad en los aspectos cualitativamente diferentes de la experiencia de color que tienen relación con diferencias de longitudes de onda o con mezclas de diferentes longitudes de onda. Es el estado puro del color, sin mezcla de blanco o negro y, junto al luminosidad y la saturación, una de las tres características psicofísicas del color.
 
Se denomina "valor(Value)" a la amplitud de la luz que define el color; más cerca del negro, más bajo es el valor. Sólo hay dos valores: blanco y negro. Los grises, que son tonos del blanco y del negro, no son valores.
Los "grises" son valores particulares en el eje negro-blanco. Siempre son una mezcla (en síntesis aditiva) de la misma proporción y con el mismo valor de los tres colores primarios, rojo, amarillo y azul. En síntesis sustractiva los tres colores son cian, amarillo y magenta. Para obtener gris, los valores de cian, magenta y amarillo no están en igual proporción.

La saturación o pureza (Saturation) es la intensidad de un matiz específico. Se basa en la pureza del color; un color muy saturado tiene un color vivo e intenso, mientras que un color menos saturado parece más descolorido y gris. Sin saturación, un color se convierte en un
tono de gris.
La saturación de un color está determinada por una combinación de su intensidad luminosa y la distribución de sus diferentes longitudes de onda en el espectro de colores. El color más puro se consigue usando una sola longitud de onda a una intensidad muy alta, como con un láser. Si la intensidad luminosa disminuye, la saturación también. Para desaturar un color en un sistema sustractivo, puede agregársele blanco, negro, gris, o su color complementario.

lunes, 13 de enero de 2014

La Informática y El Color.

Para indicar con qué proporción es mezclado cada color, se asigna un valor a cada uno de los colores primarios, de manera que el valor "0" significa que no interviene en la mezcla y, a medida que ese valor aumenta, se entiende que aporta más intensidad a la mezcla. Aunque el intervalo de valores podría ser cualquiera (valores reales entre 0 y 1, valores enteros entre 0 y 37, etc.), es frecuente que cada color primario se codifique con un byte (8 bits).
Así, de manera usual, la intensidad de cada una de las componentes se mide según una escala que va del 0 al 255 y cada color es definido por un conjunto de valores escritos entre paréntesis (correspondientes a valores "R", "G" y "B") y separados por comas.

Cubo RGB.
De este modo, el rojo se obtiene con (255,0,0), el verde con (0,255,0) y el azul con (0,0,255), obteniendo, en cada caso un color resultante monocromático. La ausencia de color, es decir el color negro, se obtiene cuando las tres componentes son 0: (0,0,0). La combinación de dos colores a su máximo valor de 255 con un tercero con valor 0 da lugar a tres colores intermedios. De esta forma, aparecen los colores amarillo (255,255,0), cian (0,255,255) y magenta (255,0,255). El color blanco se forma con los tres colores primarios a su máximo valor (255,255,255).
El conjunto de todos los colores también se puede representar en forma de cubo. Cada color es un punto de la superficie o del interior de éste. La escala de grises estaría situada en la diagonal que une al color blanco con el negro.

HTML[editar · editar código]

En las pantallas, la sensación de color se produce por la mezcla aditiva de rojo, verde y azul. Las pantallas se dividen en puntos minúsculos llamados píxeles formados por tres subpíxeles de colores primarios de luz, cada uno de los cuales brilla con una determinada intensidad.
Al principio, la limitación en la profundidad de color de la mayoría de los monitores condujo a una gama limitada a 216 colores, definidos por el cubo de color, mediante la fórmula 63=216. No obstante, el predominio de los monitores de 24-bit (resultante de 224), posibilitó el uso de 16,7 millones de colores del espacio de color HTML RGB.
La gama de colores de la Web consiste en 216 combinaciones de rojo, verde y azul, donde cada color puede tomar un valor entre seis diferentes (en numeración hexadecimal): #00, #33, #66, #99, #CC o #FF, cuyos valores respectivos en sistema decimal equivalen a 0, 51, 102, 153, 204 y 255, que tienen un porcentaje de intensidad de 0%, 20%, 40%, 60%, 80% y 100%, respectivamente. Esto nos permite dividir los 216 colores en un cubo de dimensión 6.
Se procura que los píxeles sean de un color tal que cuanto más saturado sea, será mejor, pero nunca se trata de un color absolutamente puro. Por tanto la producción de colores con este sistema tiene limitaciones:
  • La derivada del funcionamiento de las mezclas aditivas: sólo pueden ser obtenidos los colores interiores del triángulo formado por los tres colores primarios de luz.
  • La derivada del hecho que los colores primarios usados no son absolutamente monocromáticos.
  • Las diversas pantallas no son iguales exactamente, además de ser configurables por los usuarios, con lo cual varios parámetros pueden variar.
Esto implica que las codificaciones de los colores destinadas a las pantallas se deben interpretar como descripciones relativas, y entender la precisión de acuerdo con las características de la pantalla.

Codificación hexadecimal del color.

Colores de la CIE.
La codificación dodecadecimal del color permite expresar fácilmente un color concreto de la escala RGB, utilizando la notación hexadecimal, como en el lenguaje HTML y en JavaScript. Este sistema utiliza la combinación de tres códigos de dos dígitos para expresar las diferentes intensidades de los colores primarios RGB .

El blanco y el negro
Negro#000000Los tres canales están al mínimo 00, 00 y 00
Blanco#FFFFFFLos tres canales están al máximo FF, FF y FF
En el sistema de numeración hexadecimal, además de los números del 0 al 9 se utilizan seis letras con un valor numérico equivalente; a=10, b=11, c=12, d=13, e=14 y f=15. La correspondencia entre la numeración hexadecimal y la decimal u ordinaria viene dada por la siguiente fórmula:
decimal = primera cifra hexadecimal * 16 + segunda cifra hexadecimal
La intensidad máxima es ff, que se corresponde con (15*16)+15= 255 en decimal, y la nula es 00, también 0 en decimal. De esta manera, cualquier color queda definido por tres pares de dígitos.
Los tres colores básicos
Rojo#ff0000El canal de rojo está al máximo y los otros dos al mínimo
Verde#00ff00El canal del verde está al máximo y los otros dos al mínimo
Azul#0000ffEl canal del azul está al máximo y los otros dos al mínimo
Las combinaciones básicas
Amarillo#ffff00Los canales rojo y verde están al máximo
Cian#00ffffLos canales azul y verde están al máximo
Magenta#ff00ffLos canales rojo y azul están al máximo
Gris claro#D0D0D0Los tres canales tienen la misma intensidad
Gris oscuro#5e5e5eLos tres canales tienen la misma intensidad
A partir de aquí se puede hacer cualquier combinación de los tres colores.
Colores definidos por la especificación HTML 4.01
ColorHexadecimalColorHexadecimalColorHexadecimalColorHexadecimal
cyan#00ffffblack#000000blue#0000fffucsia#ff00ff
gray#808080green#008000lime#00ff00marrón#800000
navy#000080olive#808000purple#800080red#ff0000
silver#c0c0c0teal#008080white#ffffffyellow#ffff00

Los colores más saturados y los más luminosos[editar · editar código]

esquema CIE.
Supongamos tres fuentes luminosas, r, g y b, de las características indicadas en el gráfico adjunto:
Cualquier color que se pueda obtener a partir de esos tres colores primarios tendrá la forma:
(ir, ig, ib)
donde ir, ig y ib son los coeficientes de las intensidades correspondientes a cada color primario.
Si situamos los colores obtenidos en el gráfico, tenemos que:
  • Si dos de los coeficientes son nulos, el color se sitúa en el vértice correspondiente al color de coeficiente no nulo.
  • Si un coeficiente es nulo, el color se sitúa en uno de los lados del triángulo: el conjunto de todos ellos son los colores más saturados.
  • Si ninguno de los coeficientes es nulo, el color se sitúa en un punto del interior; cuanto más parecidos sean los tres coeficientes, más cerca estará del blanco (en el centro).
Al representar combinaciones de tres valores independientes en un diagrama que sólo tiene dos, resulta que a cada punto del diagrama le corresponde toda una familia de colores. Por ejemplo, los siguientes colores tienen la misma proporción de rojo, verde y azul, y por tanto les corresponde el mismo punto del gráfico. Sólo se diferencian en la intensidad.
Variación de las intensidades
100, 50, 0#643200Marrón oscuro
200, 100, 0#c86400Marrón claro
150, 75, 0#964b00Marrón
Si las intensidades ir, ig y ib tienen un límite superior (255), la condición necesaria y suficiente para que un color sea el más intenso de la familia (es decir, de los representados por el mismo punto) es que al menos uno de sus coeficientes sea 255.
Los colores que presentan la máxima saturación y la máxima luminosidad a la vez, son los que reúnen dos requisitos: al menos uno de los coeficientes es 255 y al menos uno de los coeficientes es 0. De esto se deduce que los colores más saturados y más luminosos siguen la siguiente secuencia:
amarillo
(255,255,0)
verde
(0,255,0)
cian
(0,255,255)
rojo
(255,0,0)
RGBR.pngazul
(0,0,255)
rojo
(255,0,0)
magenta
(255,0,255)